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Measuring dispersion of biphotons
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We study the interference pattern of biphotons passing through a dispersive medium, and devise a method
for measuring dispersion in coincidence counting of entangled photons. By measuring the Gouy phase shift
accompanying dispersion, we show that it fundamentally differs from the Gouy phase expected from classical
models. Finally, we show that the second-order correlation function of the dispersed biphoton can be much wider
than the pattern predicted from classical analog.
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It is well known that when path-entangled photons pass
through a dispersive medium the temporal width of their
wave packet gets broader due to dispersion. However, this
broadening, which is usually dominated by group velocity
dispersion (GVD) does not reveal itself in coincidence counts
experiments, due to dispersion cancellation [1,2]. In practice,
in two-photon interference experiments [2], measurements
are made with detectors with response time much longer
than the temporal width of the biphoton wave packet. In
this setting, one measures the coincidence counting rate by
integrating over the second-order correlation function. The
temporal integration cancels out the GVD information, and
the interference pattern appears as if the photons did not
pass through a dispersive medium whatsoever. To overcome
this difficulty, it was suggested to measure the correlation
function without the temporal integration, which means that
the temporal width of the biphoton must be much wider
than the response time of the detection system. This idea
was indeed implemented by making use of the “start-stop”
method, to demonstrate the broadening of the correlation
function of entangled photons propagating in fibers [3],
the two-photon interference of dispersed biphotons [4], and
nonlocal dispersion cancellation [5]. However, in all these
experiments the resolution time of the detection system was
of the order of hundreds of picoseconds. Thus, the biphoton
wave packet had to broaden to nanoseconds. A different
approach recently used frequency up-conversion to detect
dispersion effects on the conversion efficiency [6]. However,
while such approach indeed yields a better time resolution
(femtosecond scale resolution), it requires a high flux of
photon pairs to get reasonable conversion efficiency. Finally, a
recent proposition suggested a novel interferometer enabling
dispersion cancellation of even and odd orders without being
restricted by electronic resolutions, or by the efficiency of
nonlinear processes (which is inevitably small at a small
flux of photons) [7]. That proposed interferometer combines
Hong-Ou-Mandel (HOM) with Mach-Zehnder (MZ) inter-
ferometers. In such an interferometer, one can observe, in
different regimes, odd and even dispersion effects in the
coincidence count rate. While observing odd dispersion effects
is well understood and was observed experimentally [8],
the observation of even-order dispersion effects is novel,
and it originates from interference between two quantum
amplitudes inside the MZ interferometer. Basically, there are
two indistinguishable amplitudes that interfere; one describing

two photons evolving inside a dispersive medium (one arm
of the interferometer), the other describing two photons
evolving in free space (second arm of the interferometer).
This is in contrast to the HOM interferometer where the two
interfering amplitudes accumulate the same phase, and thus
dispersion is not manifested in the interference pattern. This
type of proposed interferometer raises new questions about
the dispersive nature of biphotons. For example, will the
measurement of biphoton dispersion yield the same results
as their classical analogs, or will they differ?

Here, we discuss a different type of interferometer, de-
signed to measure biphoton dispersion by interfering different
quantum amplitudes. We find fundamental deviations from
classical optics. First, we find that an additional phase that
always accompanies the optical wave packet manifests itself
differently for a classical and a biphoton wave packet. This
phase appears for Gaussian pulses at their first stages of
evolution [9], and it is completely analogous to the Gouy
phase appearing for a spatial Gaussian beam as it passes
through its waist (due to the uncertainty principle between
momentum and space [10]). As such, we will refer to it as
the Gouy phase. However, we emphasize that this phase is
not an outcome of spatial propagation through the waist of
a spatial Gaussian beam; rather, this phase accompanying
the biphoton wave packet arises solely from the chromatic
dispersion. This equivalence between this biphoton Gouy
phase and the spatial Gouy phase of Gaussian beams results
from the analogy between the paraxial equation describing
beam diffraction in space and the equation describing the
evolution of the slowly-varying-amplitude of a temporal pulse
in the presence of chromatic dispersion. In addition, we show
that the coincidence count measured in this interferometer
for the biphoton wave packet can vary dramatically between
two extreme cases: (a) dispersion cancellation of the biphoton
wave packet while classical pulses exhibit broadening; (b)
negligible dispersion of classical pulses while the biphoton
exhibits broadening due to dispersion.

Theory. Our interferometer is described in Fig. 1(a). Two
entangled photons are generated from a type-I BBO crystal
by pumping the crystal with cw light. The crystal is designed
to produce two degenerate noncollinear photons. The output
polarization is denoted as horizontal (H ). Then, one photon is
passed through a half wave plate to rotate its polarization to
vertical (V ), and subsequently it is passed through a controlled
delay line with relative delay of τo. The two photons, one in
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FIG. 1. (Color online) (a) Experimental system. (b), (c) The two
interfering quantum paths, presented individually. Red and blue lines
mark the paths taken by the two photons.

each arm, then enter a beam splitter (BS), which couples them
into a MZ interferometer. In each arm of the interferometer, we
split the paths taken by the V and the H photons by means of a
polarizing beam splitter (PBS). In each of these paths we may
place a sample of SF11 glass of a different thickness, such that
GVD will be different in the different paths. The four paths are
labeled 1–4. Then, we recombine the paths in each MZ arm

by a PBS. Finally, the fields from the MZ arms are directed to
the detectors by a PBS. The purpose of the final PBS placed in
front of the detectors, combined with the initial rotation of one
of the photons, is to filter out unwanted events. To explain that,
notice that inside the MZ interferometer there are four possible
quantum amplitudes, two of which describe one photon in one
arm while the second photon is in the other arm. These two
are unwanted amplitudes, as the GVD phase accumulated by
these amplitudes is identical, and thus their interference will
not contribute to the GVD measurement. This is exactly the
purpose of the last PBS placed in front of the detectors: It
filters out the possibility of measuring the interference between
amplitudes describing one photon in each arm of the MZ. That
is, if the photons go through different arms of the MZ, they
enter the same detector and never contribute to the coincidence
counts. Thus, this system ensures that we only interfere the
two amplitudes where the two photons take the same MZ
arm [Figs. 1(b) and 1(c)]. We place polarizers before the two
detectors oriented in the direction H + V to fuse the different
amplitudes, thereby erasing any “which path” information that
results from polarization. The biphoton wave packet just after
the photon passed the half wave plate is therefore

|ψ〉 =
∫

d�φ (�) a
†
�,V a

†
−�,H |0〉 , (1)

where φ(�) is the spectral amplitude, and a
†
±�,n is the field

creation operator in polarization n and frequency ωp/2 ± �,
and ωp is the pump frequency. The second-order correlation
function is G(2)(t1,t2) = |〈0|Ê(+)

2 (t2)Ê(+)
1 (t1)|ψ〉|2, where the

electric field operator at detector i at time ti is defined
as: Ê

(+)
i (ti) = ∑

n=H±V

∫
d� a

†
�,ne

−i�t1 . For a stationary
source, the correlation function depends only on τ = t2 − t1.
To calculate the coincidence count rate, we integrate the
second-order correlation function over τ , namely, RQ(τ0) =∫ ∞

−∞ G(2) (τ ) dτ , to get

RQ (τ0) = 1

8

{∫
d� |φ (�)|2 − Re

[∫
φ (�) φ∗ (−�) ei �

c
[L2−L1+L3−L4]ei�2[T 2

1 +T 2
2 −T 2

3 −T 2
4 ]e2i�τ0

]}
. (2)

Here, c is the vacuum speed of light, Li is the optical path for a photon that has passed through path i (experiencing GVD
inside the relevant dispersive medium), Ti =

√
β

(2)
i zi/2 is the characteristic dispersion time, β

(2)
i is the second-order dispersion

coefficient, and zi is the length of the dispersive sample in path i. In this paper, we study only positive dispersion (β(2)
i � 0), but

this system can be used to study negative dispersion as well. The negative sign before the interference term results from tuning
the system to have a π phase difference between the two amplitudes. We assume, for simplicity, that the joint spectral amplitude
has a Gaussian shape:

φ (�) =
(

T 2

π

)1/4

e− �2T 2

2 . (3)

T is the initial temporal width. We adjust the optical paths to have approximately equal length so L2−L1+L3−L4
c

� T , and thus
the additional phase can be neglected when evaluating the integral in Eq. (2). Substituting Eq. (3) into Eq. (2) one finds

RQ (τ0) = 1

8

⎧⎨
⎩1 − T(

T 4 + 4T 4
D

)1/4 e
− τ2

0

T 2+(2T 2
D

/
T)2

cos

[
2

τ 2
0

(2TD)2 + (T 2/TD)2
− ϕG,Q

]⎫⎬
⎭ , (4)

where we defined the dispersion time as TD =
√

(T 2
4 + T 2

3 − T 2
2 − T 2

1 )/2, and the Gouy phase is ϕG,Q = 1
2 tan−1(2T 2

D/T
2
).
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We now examine two features of the coincidence count rate
function: the width, and the equal-path visibility. The width
of the Gaussian envelope scales as 
τ0 ∼

√
T 2 + (2T 2

D /T )2.
The coherent addition of the GVD contributions from all four
paths results in an interference pattern of a width that can be
varied from T (complete dispersion cancellation) to wider
widths, according to the dispersion within each path. The
equal-path visibility (τ0 = 0) decreases when the width of the
dip increases. For strong dispersion (TD > T ), the Gouy phase
saturates as ϕG,Q → π

4 . This gives the visibility

VQ = RQ (∞) − RQ (0)

RQ (∞)
= T

4TD

. (5)

Notice that the visibility is not zero, the reason being the
Gouy phase inside the cosine function in Eq. (4). Since for
long propagation distances it takes the value π/4, the cosine
function does not vanish, and a dip is always present. This
enables a direct experimental observation of the Gouy phase

of biphotons. We emphasize that experimental setups used
in previous work [3–6] fundamentally cannot be used for
observing the biphoton Gouy phase. This is because in such
setups only the modulus of the Glauber function is measured,
for which the Gouy phase cancels out. In contradistinction with
earlier work, in our setup we interfere the dispersed biphoton
from various paths such that the Gouy phase will not disappear
when calculating the Glauber function, nor will it cancel out
in the coincidence count rate.

For comparison, we calculate the classical analog for
this system, where two pulses with randomly fluctuating
phases enter the system. We calculate the coincidence count
rate of the system as RC(τ0) = ∫ ∞

−∞
∫ ∞
−∞ G(2)(t1,t2)dt1dt2.

Assuming the initial pulse has Gaussian spectral amplitude,
φ (�) = E0( T 2

π
)1/4e−(�2T 2)/2 (where � is the detuning from

the central frequency of the pulse, T is the initial temporal
width of the pulse and E0 is the electric field amplitude),
gives the following result:

RC (τ0) = I 2

8

(
2 − T 2(

T 4 + 4T 4
13

)1/4 (
T 4 + 4T 4

24

)1/4 e
− τ2

0
4 [ 1

T 2+(T 2
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+ 1
T 2+(T 2

24/T )2
]

× cos

{
τ 2

0

4

[
1

T 2
13 + (

T 2
/
T13

)2 + 1

T 2
24 + (

T 2
/
T24

)2

]
− ϕG,C

})
. (6)

Here we again assumed that the system is tuned to have
a π phase difference between the interference terms. Also,
the interferometer is adjusted such that the four optical paths
are approximately identical in length. Defining the pulse
intensity, I = |E0|2, the dispersion times, Tmn = √

T 2
m − T 2

n ,

and the Gouy phase ϕG,C = 1
2 [tan−1( T 2

13
T 2 ) + tan−1( T 2

24
T 2 )], we

again examine the width of the interference term and the
equal-path visibility. The width scales as


τ0 ∼ 2

√√√√[
T 2 + (

T 2
13/T

)2][
T 2 + (

T 2
24/T

)2]
2T 2 + (

T 2
13/T

)2 + (
T 2

24/T
)2 .

Unlike the biphoton case, here there is no coherent addition
between the four paths. To get dispersion cancellation, the
relative GVD between paths 1 and 3 (and paths 2 and 4)
must be equal. Thus, it is possible to design a system where
a biphoton will not exhibit dispersion in the coincidence
measurement whereas the interference pattern in the coinci-
dence experiment for the corresponding classical pulses will
broaden. Interestingly, the opposite scenario is also possible:
where the biphotons exhibit dispersion while the measured
classical dispersion is approximately zero. To do that, consider
a case where T24 
 T , while T13 = 0. Now, for the quantum

state the width of the envelope is 
τ0 ∼
√

T 2 + (T 2
24/T )2,

but for the classic pulses we find 
τ0 → 2T , that is, the
width of the interference term for the classical pulses is
narrow as if dispersion is zero, while the wave packet of the
biphoton experiences dispersion broadening. In this system,

the biphoton wave packet exhibits dispersion broadening
while classical pulses display zero dispersion in correlation
measurements. The origin for this is the fact that classically the
interference dip is restricted by the narrower pulse. If the pulse
entering one detector is much narrower than the one entering
the second detector (e.g., if it did not pass a dispersive material
at all while the other one did), it will dictate the width of the
dip. For biphotons, the two-photon wave packet is the entity
experiencing dispersion, and thus the dispersion affects both
detectors simultaneously. Thus, it is impossible that the field
entering one detector will restrict the broadening—as it does
with classical pulses.

The equal-path visibility may also exhibit considerable
differences between the quantum and classical experiments.
For example, consider a case where we place dispersive
samples such that T24,T13 
 T . Now, the Gouy phase for the
classical pulses takes the value ϕG,C → π

2 . The equal-path
visibility for this case is

VC = RC (∞) − Rc (0)

RC (∞)
→ 0. (7)

Thus, whereas for classical pulses the correlations may
vanish (Poisson statistics) for τ0 = 0, for the same setting
the biphotons exhibit a dip (bunching). This is again because
the biphoton dispersion results from all paths, while for the
classical pulses it does not, and thus the additional Gouy
phase is different. This setting allows us to observe the Gouy
phase of biphotons, and to distinguish it from classic pulses.
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FIG. 2. (Color online) Biphoton dispersion. The four panels
show the experimentally measured normalized correlation func-
tion [� (τ0) = R (τ0)/R (∞)] vs the mirror displacement (x = τ0 c).
(a) No dispersion. The measured dip corresponds to a biphoton
temporal width of ∼40 fs. (b)–(d) Measured dispersion of the
biphoton wave packet. For these experiments the dispersive material
used is SF11 glass. The glass sample is introduced into paths 3 and 4,
while paths 1 and 2 remain empty. The sample lengths in paths 3 and 4
are equal. Panels (b)–(d) correspond to z3,4 =1, 4, 16 cm, respectively.
In all these figures the blue solid line marks the experimental results
while the red dashed line marks the theoretical fitting. In (c) the
black dash-dotted line marks the theoretically calculated normalized
correlation function for two classical pulses.

Experiments. We use two entangled photons generated
from spontaneous parametric down-conversion process in
a 5-mm-long type-I BBO crystal, by pumping the crystal
with cw light from Ar laser with wavelength 364 nm. The
setting was designed to produce two degenerate photons of
wavelength 728 nm, and output angles of ∼4.15◦. For all the
experiments we use SF11 glass as our dispersive medium.
First, we measure the interference dip without dispersion.
The normalized correlation function � (τ0) = R (τ0)/R (∞) is
shown in Fig. 2(a). The width is ∼20 μm, which corresponds
to temporal width of T ≈ 40 fs. Next, we insert two identical
glass samples into paths 3 and 4, while leaving paths 1
and 2 empty. In this configuration, both photons effectively
pass through the same sample in paths 3 and 4. This means
that if one removes the two small Mach-Zehnders (those
that split the photons into paths 1 and 2, and 3 and 4),
and inserts a dispersive glass into the lower arm of the
large Mach-Zehnder interferometer, the same outcome will
be measured. In such configuration, if the two photons pass
through the lower arm they disperse together, while passing
through the upper arm is not accompanied by dispersion at all.
According to Eq. (4), we expect the broadening of the dip, fast
oscillations, and for strong dispersion—nonzero equal-path
visibility. Figures 2(b)–2(d) show the dip for z3,4 =1, 4, 16 cm,
respectively [blue solid (red dashed) line shows experimental
results (theoretical fitting)]. As shown, we indeed observe
the broadening of the dip, and the fast oscillations. We find
that the GVD coefficient is approximately β(2) ≈ 3000 fs2/cm.
We also find nonzero equal-path visibility. For example, for
z3,4 = 4 cm we find VQ ≈ 0.25. For comparison, we plot in
Fig. 2(c) the classical result [Eq. (6)] in black dash-dotted
line. Clearly, the equal-path visibility goes to zero, indicating
that indeed the Gouy phase for the biphoton wave packet is
different than in classical system [in Fig. 2(c) it is always larger
than 0.9]. Clearly, the dispersion measurement of the biphoton
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FIG. 3. (Color online) Two cases of dispersion cancellation.
Measured normalized correlation function [� (τ0) = R (τ0)/R (∞)]
vs mirror displacement, x. (a) Dispersion cancellation of the biphoton
wave packet. Two glass samples of length z = 2cm are placed in
paths 2 and 3, while paths 1 and 4 are left empty. The dip width
is as narrow as without the glass samples. The black dashed line
marks the theoretical result for the classical pulses, showing dramatic
broadening of the classical width. (b) Dispersion reduction of the
classical pulses. The black solid outer line marks the envelope of the
theoretical fitting. The black dotted line shows the predicted result
for classical pulses. Comparison between the width of the dip in the
classic system and in the biphoton system shows that the classical
dip is much narrower than the dip for the biphoton wave packet. The
blue solid line marks the experimental results while the red dashed
line marks the theoretical fitting.

wave packet can yield a completely different outcome than the
classical measurement in correlation experiments.

Next, we wish to observe the two different regimes: the
quantum dispersion cancellation, and the classical reduced
dispersion. For the first regime, we choose z2,3 = 2 cm and
z1,4 = 0cm. For these lengths, the dispersion of the biphoton
is predicted to cancel out, while classically the envelope is
expected to broaden. As shown in Fig. 3(a), this is exactly
what we measure in the experiments. Blue solid (red dashed)
line shows experimental results (theoretical fitting). As can be
calculated from Fig. 3(a), the visibility is 0.7, and not 1. This
is probably due to misalignment of the system, which results
in some distinguishability between the quantum amplitudes.
Nevertheless the width of the interference dip is narrow, as
without dispersion. For comparison, we also plot the result
for the classical pulses in black dash-dotted line in Fig. 3(a).
The dip in the classical plot is almost unnoticeable and the
visibility approaches zero. For the second regime, where we
test classical reduced dispersion, we choose z2 = 8 cm and
z1,3,4 = 0 cm. Now, we expect that the width of the dip will be
enhanced, while for the classical pulses the dip’s width should
be as if dispersion did not occur. Figure 3(b) shows exactly
that. The blue solid line shows the experimental results, and
the red dashed line is the theoretical fitting. The envelope of
the theoretical interference pattern is plotted in black lines. For
comparison, we also show the classic result in the black dash-
dotted line. The classical width is significantly narrower than
the quantum case. Thus, it is possible to change the resulting
interference dip from one extreme where the quantum dip is
narrower than the classic one, to the other extreme where the
classic dip is the narrower one.

Naturally, it is instructive to compare the experiments on
the quantum effects presented in Fig. 3 to the corresponding
experiments with classical incoherent light. To this end, we
use incoherent light with a bandwidth of ∼33 nm, which
corresponds to a coherence time of T ≈ 50 fs. The light
beam is split into the two initial paths of the biphoton, and
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FIG. 4. (Color online) Measured (blue line) and theoretical fitted
(red line) normalized correlation function for classical experiments
with incoherent light. (a) z1,2 = 0 and z3,4 = 4 cm [to compare
with Fig. 2(c)]. (b) z1,3,4 = 0 and z2 = 8 cm [to be compared with
Fig. 3(b)].

passes through the exact same experimental system. The
results are shown in Fig. 4. For the experimental setup with
z1,2 = 0 and z3,4 = 4 cm, we find that the classical visibility
is VC ≈ 0.02 [shown in Fig. 4(a)] while for biphoton with the
same bandwidth it is VQ ≈ 0.35. Comparing this result with
the result presented in Fig. 2(c), it is clear that classically the
equal path visibility is indeed much lower for the classical light
[11]. In Fig. 4(b), we plot the normalized correlation function
for z1,3,4 = 0 and z2 = 8 cm. The width of the classical dip is
x ≈ 30 μm, which is much narrower than the width predicted
for the biphoton (hundreds of μm). Comparing Figs. 4(b)
and 3(b) shows clearly that, while the biphoton wave packet
exhibits significant broadening, the classical light does not
exhibit broadening at all.

To summarize, we have shown a coincidence count mea-
surement of GVD of a biphoton wave packet. In our system
dispersion can be measured for every propagation length and
does not require large propagation distances and/or huge
spreading of the packet. We presented a measurement of
the Gouy phase of a nonclassical state, and its distinction
from the classical case. We pointed to several differences
between classical and quantum GVD, among which are the
equal-path visibility and the width of the dip. We showed
that, under certain parameters, dispersion cancellation can be
inverted in such a way that the dip corresponding to classic

field will barely broaden while for a biphoton wave packet
it will dramatically increase. The origin of these effects,
which differs considerably between classical and biphoton
wave packets, is the coherent accumulation of the dispersive
phase in the biphotons case which does not happen for
classic light (it is the same effect that yields super-resolution
with nonclassical light; see Ref. [12]). This collective phase
accumulation results in a different evolution of correlated
photons in a dispersive medium, compared to the evolution
of classic pulses. These results have profound implications
in quantum optics, as experiments with entangled photons
regularly use interferometry and dispersive materials. The
fundamental aspects of dispersion measurement in a quantum
system are therefore distinct from those in a classical one,
and must be considered carefully in any quantum system
containing dispersive elements. Furthermore, if one wants
to shape the biphoton wave packet, for various purposes in
quantum information and metrology applications, one must
be able to control and measure precisely the phase of the
biphoton. Since many of the suggested sources of nonclassical
light currently can provide only low flux of entangled photons
with narrow temporal wave packets, the method suggested
here, combined with techniques known to be sensitive to odd
order of dispersion [2], can be used for pulse shaping and
measurement of such biphoton pulses. Finally, the coherent
addition of the dispersion phases can be used to measure
properties of narrow samples of materials, since the dispersion
acquired by the biphoton is equal to the dispersion accumulated
by a classical pulse propagating in the same material for twice
the distance. This concept can be extended to entangled states
with higher number of photons (NOON states), which will
result in accumulating a dispersive phase N times larger than
a classical pulse, thereby offering greatly enhanced sensitivity.
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